Научная литература
booksshare.net -> Добавить материал -> Биология -> Патрушев Л.И. -> "Искусственные генетические системы. Том 1" -> 117

Искусственные генетические системы. Том 1 - Патрушев Л.И.

Патрушев Л.И. Искусственные генетические системы. Том 1 — М.: Наука, 2004. — 256 c.
Скачать (прямая ссылка): iskusstvenniegeneticheskie2004.djvu
Предыдущая << 1 .. 111 112 113 114 115 116 < 117 > 118 119 120 121 122 123 .. 221 >> Следующая

мутаций, в которой учитываются молекулярные процессы, лежащие в основе их возникновения.
В классификации, базирующейся на размерах сегментов генома, подвергающихся преобразованиям, мутации разделяют на геномные, хромосомные и генные. При геномных мутациях у ор-ганизма-мутанта происходит внезапное изменение числа хромосом, кратное целому геному. Если через 2п обозначить число хромосом в исходном диплоидном геноме, то в результате геномной мутации, называемой полиплоидизацией, происходит образование полиплоидных организмов, геном которых представлен 4п, 6п и т.д. хромосомами. В зависимости от происхождения хромосом в полиплоидах различают аллополиплоидию, в результате которой происходит объединение при гибридизации целых неродственных геномов, и аутополиплоидию, для которой характерно адекватное увеличение числа хромосом собственного генома, кратное 2п. При хромосомных мутациях происходят как изменение числа отдельных хромосом в геноме (анеуплоидия), так и крупные перестройки структуры отдельных хромосом. Последние получили название хромосомных аберраций. В этом случае наблюдаются потеря (делеции) или удвоение части (дупликации) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсии), а также перенос части генетического материала с одной хромосомы на другую (транслокации) (крайний случай -объединение целых хромосом).
На генном уровне изменения первичной структуры ДНК под действием мутаций менее значительны, чем при хромосомных мутациях, однако, генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точковых мутациях. Поскольку в состав ДНК входят азотистые основания только двух типов - пурины и пиримидины, все точковые мутации с заменой оснований разделяют на два класса: транзиции (замена пурина на пурин или пиримидина на пиримидин) и трансверсии (замена пурина на пиримидин или наоборот). Из-за вырожденности генетического кода могут быть три генетических последствия точковых мутаций: сохранение смысла кодона (синонимическая замена нуклеотида), изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация) или образование бессмысленного кодона с преждевременной терминацией (нон-
сенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер - UAG, охр - UAA и опал - UGA. В соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов (например, амбер-мутация).
По влиянию на экспрессию генов мутации разделяют на две категории: мутации типа замен пар оснований и типа сдвига рамки считывания (frameshift). Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трем, что связано с триплетностью генетического кода. Первичную мутацию иногда называют прямой мутацией, а мутацию, восстанавливающую исходную структуру гена, - обратной мутацией, или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Молекулярно-генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны.
Умение индуцировать мутации в клонированных генах с целью получения мутантных белков лежит в основе белковой инженерии. При этом используют две группы методов, приводящих к разным последствиям на молекулярном уровне. Первая группа основана на случайном мутагенезе, т.е. введении в мутагенизиру-емый участок гена многих мутаций, положение каждой из которых не контролируется исследователем, а ограничивается лишь размером фрагмента нуклеиновой кислоты, в который эти мутации вводятся. Более или менее случайный мутагенез имеет место, в частности, при инкубации нуклеиновых кислот с химическими мутагенами или осуществлении их синтеза с помощью ДНК-полимераз с ослабленной специфичностью в отношении субстра-тов-предшественников. Совокупность этих подходов активно используется при проведении направленной эволюции белковых молекул. Вторая группа методов, получившая название направленного или сайт-специфического мутагенеза, обеспечивает введение мутаций в строго определенные участки нуклеиновых кислот, что позволяет заменять отдельные аминокислотные остатки в кодируемых этими молекулами белках и ферментах. Направленный мутагенез является сердцем (но не мозгом) рационального дизайна и редизайна белковых молекул, к рассмотрению которого мы сейчас переходим.
Глава 1
Рациональный дизайн и редизайн белковых молекул
Рациональный дизайн белков основывается на сознательном использовании законов формирования пространственной структуры белков и механизмов ферментативного катализа для создания новых макромолекул, обладающих требуемыми свойствами. Конструирование белковой молекулы с чистого листа de novo в наиболее сложной и интригующей форме предполагает получение последовательности, не встречающейся в природе, которая претерпевает фолдинг с образованием белковой глобулы с предсказанной в проекте третичной структурой и ферментативной активностью. Термин “дизайн de novo” также часто используют для описания процесса конструирования белковой молекулы с заложенными исследователем особенностями пространственной структуры ее скелета без учета данных о точных координатах атомов макромолекулы. Кроме того, все вышеупомянутые возможности успешно применяются для перестройки известных белков с целью направленного изменения их свойств и биологической активности. В этом случае в процессе редизайна пересматриваются проекты основного дизайнера белков - природы, как правило, в двух основных направлениях: для создания мини-белков, более короткие полипептидные цепи которых сохраняют важные свойства исходных природных макромолекул, а также для получения ферментов с измененной субстратной специфичностью или обладающих большей стабильностью в экстремальных условиях их использования (экстремозимов).
Предыдущая << 1 .. 111 112 113 114 115 116 < 117 > 118 119 120 121 122 123 .. 221 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed