Научная литература
booksshare.net -> Добавить материал -> Биология -> Патрушев Л.И. -> "Искусственные генетические системы. Том 1" -> 108

Искусственные генетические системы. Том 1 - Патрушев Л.И.

Патрушев Л.И. Искусственные генетические системы. Том 1 — М.: Наука, 2004. — 256 c.
Скачать (прямая ссылка): iskusstvenniegeneticheskie2004.djvu
Предыдущая << 1 .. 102 103 104 105 106 107 < 108 > 109 110 111 112 113 114 .. 221 >> Следующая

122. Ricci J.C.D. et al. Plasmid effects on Escherichia coli metabolism I I Crit. Rev. Biotechnol. 2000. Vol. 20. P. 79-108.
123. Matthews K.S., Nichols J.С. Lactose repressor protein: Functional properties and structure // Prog. Nucl. Acid Res. Mol. Biol. 1998. Vol. 58. P. 127-164.
124. Ptashne М., Jeffrey A., Johnson A.D. et al. 1980. How the X repressor and Cro work. // Cell. Vol. 19. P. 1-11.
125. Dubendorff J.W., Studier F.W. Controlling in an inducible T7 expression system by blocking the target T7 promoter with lac repressor // J. Mol. Biol. 1991. Vol. 219. P. 45-59.
126. Studier F.W., Moffatt В A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes // J. Mol. Biol. 1986. Vol. 189. P. 113-130.
127. McCarthy J E.G. Posttranscriptional control of gene expression in yeast // Microbiol. Mol. Biol. Rev. 1998. Vol. 62. P. 1492-1553.
128. Shine J., Dalgarno L. The З'-terminal sequence of Escherichia coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites // Proc. Nat. Acad. Sci. U.S.A. 1974. Vol. 71. P. 1342-1346.
129. McCarthy J.E.G., Brimacombe R. Prokaryotic translation: The interactive pathway leading to initiation // Trends Genet. 1994. Vol. 10. P. 402-407.
130. De Smit M.H., van Duin J. Control of prokaryotic translational initiation by mRNA secondary structure // Prog. Nucl. Acid Res. Mol. Biol. 1990. Vol. 38. P. 1-35.
131. Grantham R., Gautier C., Gouy M. et al. Codon catalog usage is a genome strategy modulated for gene expressivity. Nucl. Acids Res. 1981. Vol. 9. P. 43-74.
132. Xia X. How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiael // Genetics. 1998. Vol. 149. P. 37-44.
133. Mottagui-Tabar S., Isaksson L.A. The influence of the 5' codon context on translation termination in Bacillus subtilis and Escherichia coli is similar but different from Salmonella typhimurium // Gene. 1998. Vol. 212. P. 189-196.
[34. Moszer I., Rocha E.P.C., Danchin A. Codon usage and lateral gene transfer in Bacillus subtilis // Curr. Opin. Microbiol. 1999. Vol. 2. P. 524-528.
135. Rosenberg A.H., Goldman E., Dunn, JJ. et al. // J. Bacteriol. 1993. Vol. 175. P. 716-722.
136. Del Tito B.J. Jr., Ward J.M., Hodgson J. et al // Ibid. 1995. Vol. 177. P. 7086-7091.
137. Caponigro G., Parker R. Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae // Microbiol. Rev. 1996. Vol. 60. P. 233-
249.
138. Jacobson A., Peltz S'Ж Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells // Annu. Rev. Biochem. 1996. Vol. 65. P. 693-739.
139. Ralph A., Bradshaw, William W. et al. N-Terminal processing: The methionine aminopeptidase and Na-acetyl transferase families // Trends Biochem. Sci. 1998. Vol. 23. P. 263-267.
140. Varshavsky A. The N-end rule: Functions, mysteries, uses // Proc. Nat. Acad. Sci. USA. 1996. Vol. 93. P. 12142-12149.
141. Preibisch G., Ishihara H., Tripier D., Leineweber M. // Gene. 1988. Vol. 72. P. 179-186.
142. Lindahl L., Hinnebusch A. Diversity of mechanisms in the regulation of translation in prokaryotes and lower eukaryotes // Curr. Opin. Genet. Develop. 1992. Vol. 2. P. 720-726.
143. McCarthy J.E., Gualerzi C. Translational control of prokaryotic gene expression I I Trends Genet. 1990. Vol. 6. P. 78-85.
144. Lilie H., Schwarz E., Rudolph R. Advances in refolding of proteins produced in E. coli Ц Curr. Opin. Biotechnol. 1998. Vol. 9. P. 497-501.
145. Panda A.K. Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli // Adv. Biochem. Engin. Biotechnol. 2003. Vol. 85. P. 43-93.
146. De Bernardez Clark E. Refolding of recombinant proteins // Curr. Opin. Biotechnol. 1998. Vol. 9. P. 157-163.
147. Schein C.H., Noteborn M.H.M. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature // BioTechnology. 1988. Vol. 6. P. 291-294.
148. Braun P., Gerritse G., van Dijl J.-M., Quax WJ. Improving protein secretion by engineering components of the bacterial translocation machinery I I Curr. Opin. Biotechnol. 1999. Vol. 10. P. 376-381.
149. Joly J.C., Leung W.S., Swartz J.R. Overexpression of Escherichia coli oxi-doreductases increases recombinant insulin-like growth factor-I accumulation // Proc. Nat. Acad. Sci. USA. 1998. Vol. 95. P. 2773-2777.
150. GoloubinojfP., Gatenby A.A., Lorimer G.H. GroE heat shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli // Nature. 1989. Vol. 337. P. 44-47.
151. Thomas J.G., Ayling A., Baneyx F. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. Appl. Biochem. Biotechnol. 1997. Vol. 66. P. 197-238.
152. Hlavac F., Rouer E. Expression of the protein-tyrosine kinase p561ck by
the pTRX vector yields a highly soluble protein recovered by mild sonica-tion //Protein Expr. Purif.1997. Vol. 11. P. 227-232.
Предыдущая << 1 .. 102 103 104 105 106 107 < 108 > 109 110 111 112 113 114 .. 221 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed