Научная литература
booksshare.net -> Добавить материал -> Биология -> Кудряшов Ю.Б. -> "Основы радиационной биофизики" -> 21

Основы радиационной биофизики - Кудряшов Ю.Б.

Кудряшов Ю.Б., Беренфельд Б.С. Основы радиационной биофизики — Москва, 1982. — 304 c.
Скачать (прямая ссылка): osnoviradicionnoybiofiziki1982.djvu
Предыдущая << 1 .. 15 16 17 18 19 20 < 21 > 22 23 24 25 26 27 .. 144 >> Следующая

ГЛАВА II
ЗАВИСИМОСТЬ БИОЛОГИЧЕСКОГО ЭФФЕКТА ОТ ПОГЛОЩЕННОЙ ДОЗЫ ИЗЛУЧЕНИЯ. ПРИНЦИП ПОПАДАНИЯ И КОНЦЕПЦИЯ МИШЕНИ
Исследования, выполненные «а начальном этапе развития радиобиологии, позволили в общих чертах установить качественную картину лучевого поражения клеток и разнообразных многоклеточных организмов. Экспериментаторы с большим интересом подвергали биологические объекты «рентгенизации» или действию эманации радия. Они отмечали, что в результате облучения угнетается 'клеточное деление, возникает аномалия роста и развития, происходит атрофия кроветворных органов, дегенерация семенников и яичников, гибель различных организмов, включая млекопитающих. В этот период установлено бластомогенное действие радиации и другие отдаленные эффекты облучения.
Строгие количественные эксперименты впервые были проведены в конце 20-х гг. Этому способствовало два обстоятельства. Во-первых, широкое распространение получают ионизационный метод дозиметрии излучения и международная единица экспозиционной дозы — рентген (Р); облучение экспериментальных объектов строго дозируется, и условия опыта могут многократно воспроизводиться. Во-вторых, для количественных экспериментов исследователи стали использовать клоны генетически однородных 'клеток, вирусные частицы, препараты макромолекул, т. е. такие системы, в которых легко определить реакцию единичного объекта на действие данной дозы излучения.
На рис. II-1 представлены результаты некоторых таких работ. Зависимость биологического эффекта от дозы облучения отражают кривые «доза—эффект». Для построения этих кривых объекты облучают в широком диапазоне доз, после действия каждой дозы определяют долю особей, сохранивших исходные свойства, по отношению к их общему числу до облучения.
Кривые «доза—эффект» (рис. II-1, А—Г) построены авторами на основании экспериментов с простейшими, яйцами аскариды, вирусами, ферментами. Разнообразны объекты, различны диапазоны использованных доз излучения, но во всех случаях наблюдается интересная закономерность: при самых малых дозах облучения уже обнаруживаются инактивированные клетки, вирусные частицы или макромолекулы (все кривые надежно экстраполируются к нулевой точке), а при дозах, в сотни и тысячи раз больших, все еще удается обнаружить объекты, сохранившие исходные биологические свойства, т. е. не пораженные излучением.
Обнаруженный в строгих количественных экспериментах ха^ рактер зависимости биологического эффекта от дозы облучения трудно объяснить, оставаясь в рамках только бирлогических закономерностей, т. е. исходя лишь из особенностей объекта (клетки, вируса или фермента). Отсутствие нижнего порога на кривой «доза—эффект» означает, что в пределах 'Генетически однородной популяции существуют объекты, которые гибнут при самых малых дозах, тогда как другие выживают при действии огромных доз облучения. Естественная вариабельность (минималь-
Доза у-лучей,х 102Гр Доза рентгеновских лучей,X ю’Гр
Рис. II—I. Зависимость биологического эффекта or дозы облучения: А — гибель инфузорий Colpidium colpoda через 2 часа после облучения (Кроутер, 1926), Б — гибель яиц аскариды после облучения в аэробных условиях (Браун, Хольтузен, 1929), В — инактивация вируса табачной мозаики у-лучамн (Ли, Смит, 1940), Г — инактивация сухой рибо-нуклеазы (Ли др., 1944)
ная для клеток одного клона) не может служить причиной этого эффекта. Еще труднее предполагать, что среди макромолекул рибонуклеазы (рис. II-1, Г), обладающих одинаковыми физикохимическими свойствами, одни молекулы утрачивают каталитическую активность при действии малых доз, а другие сохраняют активность при действии тысячекратно превосходящих доз лишь в силу особенностей самого объекта, подвергающегося облучению. Объяснение, вероятно, следует искать в особенностях воздействия — ионизирующего излучения.
Рассматриваемые кривые «доза—эффект» показывают, какая доля объектов инактивируется при поглощении системой определенного количества энергии ионизирующих излучений. Предста-
Цим, что эта же система (суспензия клеток, препарат вирусных частиц или лЦкромолекул) получает энергию иным путем, например за ючет нагревания от какого-либо источника тепла. В этом случае кривая Чдоза—эффект» примет иной вид. Вплоть до некоторой температуры Т°i не обнаруживаются инактивированные объекты, после эхрй пороговой температуры число пораженных объектов возрастает до максимального значения, и, если процесс термоинактивации Необратим, при достижении некоторой температуры Т°2 мы не обнаружим ни одного вируса, макромолекулы и тем более клетки, оставшихся непораженными. Таким образом, решающее влияние на'характер дозной кривой оказывают не особенности объектов, а способ сообщения энергии. В опытах по термоинактивации, о которых шла речь, энергия от источника тепла сообщалась всем объектам равномерно и одинаково за счет теплопроводности воды или воздуха (в жидких или сухих препаратах соответственно). Ионизирующие частицы, (напротив, сообщают системе энергию дискретными порциями, и процесс передачи энергии носит статистический характер. Поэтому среди совокупности облучаемых микроструктур одни из них с определенной вероятностью поглощают энергию излучения, тогда как другие вообще «не знают», что облучение имело место. Такие представления, основанные на фундаментальных физических концепциях о механизме взаимодействия ионизирующих излучений >с веществом, поз,воляют объяснить количественные закономерности, наблюдаемые в радиобиологических экспериментах.
Предыдущая << 1 .. 15 16 17 18 19 20 < 21 > 22 23 24 25 26 27 .. 144 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed