Научная литература
booksshare.net -> Добавить материал -> Биология -> Кудряшов Ю.Б. -> "Основы радиационной биофизики" -> 112

Основы радиационной биофизики - Кудряшов Ю.Б.

Кудряшов Ю.Б., Беренфельд Б.С. Основы радиационной биофизики — Москва, 1982. — 304 c.
Скачать (прямая ссылка): osnoviradicionnoybiofiziki1982.djvu
Предыдущая << 1 .. 106 107 108 109 110 111 < 112 > 113 114 115 116 117 118 .. 144 >> Следующая

1 — токсичностью для клеток продуктов их радиолиза; 2 — реакцией с радикалами радиолиза воды и с радикалами макромоле-
кул, индуцированными облучением; 3 — подавлением активности ферментов репарации; 4 — ингибированием химического восстановления поврежденных макромолекул за счет блокирования сульфгидрильных групп и переноса атома водорода.
Действие продуктов деградации и радиолиза радиосенсибилизатора
Повышение радиочувствительности клеток, возможно, связано с образованием токсических продуктов при облучении сенсибилизатора, его метаболической деградации, окислении и т. д.
Типичным примером радиосенсибилизаторов являются иодсо-держащие вещества, например йодацетамид (ЙАА) и йодуксус-ная кислота. Техникой быстрого смешивания было показано, что ЙАА, добавленный через 3 мс после облучения, не оказывает никакого эффекта; сенсибилизация наблюдается при добавлении его за 3 мс до облучения, т. е. за время, недостаточное для реакции с SH-группами. Механизм радиосенсибилизации, по-видимому, свободнорадикальный; основную роль могут играть радикалы J и J- (RJ), долго живущие и достаточно избирательные в своей реактивности. Кроме того, продукты радиолиза йодсодержащих соединений могут взаимодействовать с мембранами, связываться с ДНК, подавлять синтез ДНК, РНК, воссоединять одиночные разрывы ДНК, ингибировать SH-группы.
При воздействии ряда других ингибиторов SH-групп, как указывалось выше, также образуются активные промежуточные продукты исходных соединений. В некоторых случаях эти промежуточные продукты оказывают иное действие, чем исходное соединение.
Ингибиторы радикальных реакций, имеющие фенольную структуру, были предложены для использования в биологических системах академиком Н. М. Эмануэлем. Соединения этого класса обладают радиозащитными свойствами, снижая гибель облученных животных, клеток в культуре ткани, уменьшая радиационную-деполимеризацию изолированной ДНК- Пропиловый эфир галловой кислоты (ПГ), одно из соединений этого класса, при инкубации в водных растворах в присутствии кислорода окисляется, образуя в качестве промежуточных продуктов семихинонные ион-радикалы, перекись водорода, ортохинон и др. Оказалось, что радиомодифицирующее действие ПГ в значительной степени зависит от времени его контакта с клетками до облучения. Так, при введении препарата за 15 мин до облучения клеток в культуре ткани отмечается защитный эффект, сопровождающийся увеличением значения дозы D0. При введении ПГ за 18 ч до облучения наблюдается радиосенсибилизирующее действие, значение дозы D0 уменьшается в 1,6 раза. При пострадиационной обработке клеток их реакция не изменяется.
Следовательно, ингибиторы радикальных реакций в зависимости от условий применения могут вызывать радиозащитный или радиосенсибилизирующий эффект. Но, по-видимому, во всех случаях для изменения радиационной реакции они, или продукты их метаболизма, должны присутствовать в клетках во время облучения. Защитное действие ПГ тогда объясняется его реакцией со свободными радикалами, возникающими при облучении, и инактивацией их. Сенсибилизирующий эффект проявляется за счет действия образующихся из исходного соединения активных продуктов радикального и нерадикального характера — семихи-нонных ион-радикалов, хинонов, перекисей и др., способных образовывать комплексы с радикалами макромолекул, как это показано для соединений, имеющих структуру хинонов (синкавит, ме-надион).
Воздействие электрон-акцепторными соединениями
Универсальная способность кислорода модифицировать эффективность облучения привела к поиску веществ, действующих по аналогичному механизму. В 60-е гг. было высказано предположение о том, что радиосенсибилизирующая активность ряда химических соединений связана с их способностью акцептировать электроны. Соединений этих в настоящее время известно довольно много, причем некоторые из них давно используются в биологических системах, другие вновь синтезированы; к ним относятся: производные глиоксаля, стабильные свободные радикалы, производные ацетофенона, нитрофураны, производные хинонов, нитробензолы, нитроимидазоты и ряд других.
Для этого обширного ряда химических соединений предполагается следующий механизм действия: в результате прямого и непрямого действия радиации образуются радикалы мишеией (подразумеваются молекулы ДНК), которые могут сразу же восстановиться химическим путем, тогда повреждение не будет реализовано; или же может произойти окисление этого радикала, акцептирование электрона кислородом или другим электрон-ак-цепторным соединением (ЭАС), что приведет к реализации повреждения. Далее, если произойдет энзиматическая репарация, то целостность мишени может восстановиться; однако нельзя исключить возможности возникновения нерепарабельного повреждения, вызывающего гибель клетки. И действительно, этот механизм был показан в модельных системах: методом импульсного радиолиза и ЭПР-спектроскопией в водных растворах был зарегистрирован перенос электронов с оснований нуклеиновых кислот, нук-леозидов и нуклеотидов к сенсибилизатору. Помимо переноса электрона или даже одновременно с этим процессом возможны дополнительные радиационно-химические реакции связывания ра-диосенсибилизатора со свободнорадикальными продуктами моле-
Предыдущая << 1 .. 106 107 108 109 110 111 < 112 > 113 114 115 116 117 118 .. 144 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed