Научная литература
booksshare.net -> Добавить материал -> Биология -> Иваницкий Г.Р. -> "Математическая биофизика клетки" -> 9

Математическая биофизика клетки - Иваницкий Г.Р.

Иваницкий Г.Р., Кринский В.И., Сельков Е.Е. Математическая биофизика клетки — Наука, 1978. — 312 c.
Скачать (прямая ссылка): matematicheskayabio1978.djvu
Предыдущая << 1 .. 3 4 5 6 7 8 < 9 > 10 11 12 13 14 15 .. 121 >> Следующая

В противоположность изостерическим модификаторам модификаторы, молекулы которых присоединяются к ферменту в участке, отличном от активного центра, называются аллостериче-скими модификаторами [23, 24]; место связывания такого модификатора называется аллостерическим, или регуляторным, центром, а фермент, имеющий аллостерический центр — аллостерическим, или регуляторным, ферментом.
Очевидно, что присоединение модификатора к аллостерическо-му центру может вызвать изменение активности и специфичности каталитического центра лишь путем изменения конформации фермента. Это допущение и лежит в основе теории механизма действия аллостерических ферментов, предложенной в 1965 г. Моно, Уайменом и Шанжё [25].
Регуляторные ферменты выполняют разнообразные нехимические функции в системах клеточной авторегуляции. Авторегуляцией [26, 27] называется процесс закономерного изменения или поддержания в заданных пределах определенных биологических величин, таких, как концентрации, скорости синтеза и распада различных клеточных веществ, активности ферментов и генов, pH, осмотическое давление, мембранная проницаемость, трансмембранная разность электрических потенциалов и т. д. Типичным механизмом биохимической авторегуляции является механизм угнетения ферментов конечным продуктом, открытый в 1954 г. Новиком и Сциллардом [28] в форме угнетения триптофаном одного из ферментов, участвующих в синтезе предшественников триптофана. Подобные механизмы были обнаружены впоследствии практически во всех участках обмена бактериальных, растительных и животных клеток [23, 24, 29—34]. Основное назначение механизмов угнетения ферментов конечным продуктом — стабилизация концентраций важнейших промежуточных веществ клеточного обмена.
Молекулы ферментов могут иметь один или несколько активных центров и один или несколько регуляторных центров. Условимся называть ферменты, имеющие только один активный центр, одноцентровыми, а ферменты с несколькими активными центрами — многоцентровыми ферментами.
Участие в ферментативной реакции нескольких субстратов, продуктов и модификаторов неизбежно приводит к тому, что уравне-
ние, описывающее зависимость квазистадионарной скорости такой реакции от концентраций реактантов и модификаторов, оказывается очень сложным и непригодным для использования в моделях полиферментных систем. Учитывая это обстоятельство, при разработке математических моделей ферментативных реакций приходится сознательно идти на ряд упрощений, вводящих некоторую погрешность в математическое описание кинетики реакций. Эта погрешность в описании реакций есть неизбежная плата за возможность представления многостадийных полиферментных систем математическими моделями обозримой сложности. Насколько должна быть упрощена модель той или иной ферментативной реакции, можно решить лишь в процессе анализа модели всей полиферментной системы, когда становится ясным, какие из свойств реакции существенны для понимания свойств изучаемой полиферментной системы. Поэтому многие из выводимых в последующих разделах моделей ферментативных реакций приводятся с некоторой избыточной подробностью, от которой легко избавиться, внеся в них необходимые упрощения.
1.3. Метод графов
При выводе уравнений скоростей ферментативных реакций используется ряд упрощающих допущений. В частности, как правило, принимают, что ферментативная реакция протекает в условиях идеального перемешивания, термо- и рН-статирования и что в реакции очень быстро устанавливается квазистационарное состояние (см. раздел 2.1), в котором все промежуточные формы фермента находятся в равновесии друг с другом. Приставка «квази» означает, что лишь часть переменных достигает стационарных значений, тогда как остальные продолжают медленно меняться. Использование допущения о достижении частью концентраций (биохимической системы квазистационарных значений известно в литературе как метод Боденштейна — Семенова [35, 36]1. Этот метод позволяет резко упростить анализ (био)химических систем. Вместо решения систем нелинейных дифференциальных уравнений, описывающих изменение промежуточных веществ в ходе реакции, в соответствии с этим методом удается решать лишь системы алгебраических уравнений, связывающих друг с другом квазистацио-
1 Несмотря на широкое применение этого метода, он длительное время оставался математически необоснованным. Это вызывало и вызывает многочисленные недоразумения. Строгое математическое обоснование стало возможным лишь сравнительно недавно [37—43], после того, как А. Н. Тихоновым [37, 38] была доказана теорема о предельном переходе е —> 0 в системе дифференциальных уравнений, содержащих малый параметр при некоторых производных.
нарные концентрации промежуточных веществ. Основная причина, из-за которой в ферментативной реакции устанавливается ква-зистационарное состояние, заключается в том, что концентрация фермента обычно на несколько порядков меньше, чем концентрации субстратов, взаимодействующих с ферментом [44, 45].
Как правило, системы алгебраических уравнений, описывающих квазистационарные состояния ферментативных реакций, линейны, так как взаимопревращения между промежуточными формами и комплексами представляются мономолекулярными реакциями. Поэтому для определения квазистационарных концентраций промежуточных веществ используются методы линейной алгебры. В последние годы для этой цели стали широко применяться методы теории графов [2, 46, 47].
Предыдущая << 1 .. 3 4 5 6 7 8 < 9 > 10 11 12 13 14 15 .. 121 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed