Научная литература
booksshare.net -> Добавить материал -> Биология -> Иваницкий Г.Р. -> "Математическая биофизика клетки" -> 88

Математическая биофизика клетки - Иваницкий Г.Р.

Иваницкий Г.Р., Кринский В.И., Сельков Е.Е. Математическая биофизика клетки — Наука, 1978. — 312 c.
Скачать (прямая ссылка): matematicheskayabio1978.djvu
Предыдущая << 1 .. 82 83 84 85 86 87 < 88 > 89 90 91 92 93 94 .. 121 >> Следующая

Целью работы явилось уточнение пространственной организации кристаллических агрегатов ЛАП по электроино-микроскопи-ческим данным с использованием моделирования на УЦВМ и оптической обработки изображений в когерентных системах [34]. Необходимо было уточнить, под каким углом две группы тримеров расположены по отношению друг к другу.
Интерпретация электронно-микроскопических изображений
кристаллической лейцинаминонептидазы
На рис. 111, б показано электронно-микроскопическое изображение кристаллических агрегатов ЛАП с увеличением 300 000. С целью исключения артефактов для контрастирования использовали как катионные (уранилаксалат), так и анионные (метил-аминовольфрамат) контрастирующие вещества.
Негатив электронно-микроскопического изображения ЛАП (рис. 111, б) помещали в дифрактометр. Описание дифрактометра
?°с
0Q
Рис. 111. Анализ электронно-микроскопического изображения кристаллической лейцинаминопептидазы методами оптической обработки изображений о — возможная агрегация субъединиц (I — модель Дамашуна [35]; 2 — уточненная нами модель); б — электронно-микроскопическое изображение; в — дифракционный спектр участка изображения; г — схема расположения дифракционных максимумов в спектре; д, е — модельные изображения, полученные в результате анализа спектра
имеется в работе [2]. Дифракционный спектр участка микрофотографии приведен на рис. 111, в. Как показали замеры, дифракционные максимумы спектра располагаются на концентрических окружностях (рис. 111, г), радиусы которых представляются рядом чисел: 1, ^3, Y?, 3, 2, j/3, ... В соответствии с выражением (9.3) от спектра изображения можно перейти опять к плоскому изображению. При построении модельных изображений использовались статистические параметры расположения дифракционных максимумов в спектре.
На рис. 111, д, е показаны модельные изображения с истинным характером симметрии. Распределение энергии в спектре по направлениям 0,60, 120° (рис. 111, в, г) соответствует распределению интенсивности в структуре вдоль направлений, указанных стрелками 1, 3, 2 (поворот на 90°, рис. 111, 3); составляющие спектра вдоль направлений 30, 90, 150° (рис. 111, г) соответствуют распределениям интенсивности в структуре по направлениям, указанным стрелками 6, 5, 4 (рис. 111, д). Положение рефлексов на окружности радиусов и R2 (рис. 111, в, г) соответствует расстояниям в реальной структуре d2 и (рис. 111, е).
Проекция каждой пары тримеров обладает симметрией третьего порядка, узлы решетки представляют собой центры симметрии шестого порядка (рис. 111, д). Элементарная ячейка ABCD путем трансляций вдоль направлений 1, 3 формирует изображение структуры.
Следующий этап обработки изображения состоял в том, чтобы точно определить геометрические параметры элементарной ячейки структуры. Для этого была проведена двумерная амплитудная фильтрация электронно-микроскопического изображения [2]. Результатом фильтрации явился «очищенный» от шумов участок электронно-микроскопического снимка, на котором видно, что пара тримеров в проекции представляет собой шестиугольник с неравными сторонами (рис. 112, а). Чтобы убедиться в этом, с помощью денситометра оптическая плотность каждого участка отфильтрованного снимка была оцифрована. Затем участки одинаковой плотности были соединены линией. Одно из изображений пары тримеров, оконтуренное линией равной плотности, показано на рис. 112, б, где а и Ъ — стороны шестиугольника. На основе измерений величин а и Ъ была построена гистограмма (рис. 112, в). Из гистограммы видно, что отношение наиболее вероятных значений сторон шестиугольника составляет 1,6—1,7, а распределение близко к нормальному.
Итак, после проведенных измерений (рис. 112,в), имея априорную информацию о возможной агрегации субъединиц в пространстве (рис. 111,а), можно с помощью моделирования на УЦВМ попытаться определить угловое расположение субъединиц по отношению друг к другу.
Рис. 112. Определение размера сторон шестиугольника, образованного парой тримеров
а — изображение кристаллической лейцинаминопептидазы, полученное в результате оптической фильтрации; б — контур равной оптической плотности;
в — гистограмма распределения соотношения сторон
V * ®" 1Г1Г...............
При изучении реальных биологических структур мы сталкиваемся с трудностями при их описании. Поэтому для задач моделирования исследуемая объемная система нуждается в некоторых упрощениях.
Эти упрощения должны обеспечить построение математической модели, содержащей в себе основные элементы ори-
О 15 30 М SO ос (град)
Рис. 113. Результат моделирования структуры кристаллической лейцина-минопептидазы на УЦВМ
о — изменение соотношения сторон шестиугольника в зависимости от углового расположения пары тримеров; б — условное изображение пары тримеров на экране дисплея
гинала и в то же время обеспечивающей возможность анализа структуры оптимальным образом.
В данном случае каждый тример на первом этапе моделирования на УЦВМ был представлен в виде трех шариков равномерной плотности. Структурная связь между тримерами в одной плоскости заменялась условием касания соседних тримеров и соответствующих тримеров в параллельной плоскости. Варьировался угол поворота а верхнего тримера относительно нижнего в пределах О—75°. Построенные таким образом модификации модели обрабатывались с помощью УЦВМ путем введения математического оператора, соответствующего формированию реального изображения структуры в электронном микроскопе [см. выражение (9.1)]. Полученные цифровые массивы распределения плотности модельного «изображения» структуры сравнивались с массивом плотности пары тримеров на электронно-микроскопической фотографии структуры, полученным на денситометре. За критерий близости выбирался минимум среднеквадратичных отклонений, вычисленный по соответствующим точкам массива реальной структуры и модельных вариантов, полученных при разных углах ориентации тримеров. Кроме математического критерия оценки проводилась визуальная оценка близости модели и объекта с помощью дисплея, а также цифровых распечаток рассматриваемых массивов, также производилось сравнение и по двумерным спектрам. Для этого с помощью быстрого преобразования Фурье на УЦВМ строились «дифракционные» картинки от разных модификаций моделей и сравнивались с дифракционными спектрами реальной структуры.
Предыдущая << 1 .. 82 83 84 85 86 87 < 88 > 89 90 91 92 93 94 .. 121 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed