Научная литература
booksshare.net -> Добавить материал -> Биология -> Иваницкий Г.Р. -> "Математическая биофизика клетки" -> 85

Математическая биофизика клетки - Иваницкий Г.Р.

Иваницкий Г.Р., Кринский В.И., Сельков Е.Е. Математическая биофизика клетки — Наука, 1978. — 312 c.
Скачать (прямая ссылка): matematicheskayabio1978.djvu
Предыдущая << 1 .. 79 80 81 82 83 84 < 85 > 86 87 88 89 90 91 .. 121 >> Следующая

В физической механике существует теория упругих пленок, основанная на работах К. Ф. Гаусса и У. Гиббса, но все попытки приложения этой теории к описанию мембран живых клеток не увенчались успехом.
Возникает вопрос: можно ли к цитоплазме и мембранам живой клетки (т. е. гетерогенным системам, обладающим свойства-
ми гомеостаза, имеющим внутри себя обратные связи) применять понятия физической механики, а именно понятие вязкости, коэффициентов поверхностного натяжения, модуля упругости и т. д.?
Клетка является динамической системой, поэтому необходимо исследовать не абсолютные значения коэффициентов, используемых в физической механике, а локальное изменение этих величин во времени и пространстве. При этом следует учитывать три момента.
1. Упаковка молекул фосфолипидов и белков наьязывает мембране, состоящей из них, такую форму, при которой электрический заряд внутри слоя будет минимальным. Поэтому такая пленка легко искривляется в очень малых пределах (пока не произойдет некоторое ее сжатие), а затем для ее дальнейшего искривления требуются большие усилия. Таким образом, изменения вязкости и коэффициента поверхностного натяжения имеют нелинейный характер.
2. Мембрана живой клетки находится на грани фазового перехода от кристаллической структуры к аморфной, т. е. коэффициент вязкости но поверхности мембраны меняется от точки к точке и находится в состоянии динамического равновесия, по-видимому, управляемого белками-«скрепками». Другими словами, часть участков мембраны переходит в аморфное состояние, в свою очередь другая часть переходит в кристаллическое. Это условие также делает классическую теорию гибких пленок несправедливой для биологических мембран.
3. Известно утверждение «мембрана рождает мембрану», т. е. наличие мембраны служит «затравкой» для дальнейшего увеличения ее поверхности, а рост мембраны никак не учитывается в существующей теории.
Чтобы избежать перечисленных выше трудностей в применении классической теории упругих пленок к биологическим мембранам, было предложено [25] выделить и отдельно описывать три типа реакции мембран при воздействии на них: первый — изменение формы без изменения площади поверхности при низком модуле упругости (т. е. чистая деформация); второй — увеличение поверхности без изменения формы (т. е. чистый рост) .и, наконец, третий — локальное изменение кривизны мембраны за счет местного молекулярного воздействия (например, разжижение мембраны, локальное изменение вязкости). Во втором случае мембране приписывается большой коэффициент упругости. Она как бы пружинит, противодействуя изменению формы. Очевидно, что третий тип реакции мембран активный, а поэтому наиболее сложный. Экспериментально определить изменение коэффициента вязкости по поверхности мембрапы чрезвычайно трудно, поэтому о нем судят косвенно по изменению эластических констант под действием осмотического давления. Однако даже такое грубое приближение
дает возможность вычислить величины взаимодействующих сил, возникающих в молекулярных слоях мембран за счет электростатических зарядов.
В работе [26] в основу классификации положены физико-химические феномены, поддерживающие целостность мембраны при растягивающих воздействиях. При разрыве мембран возможны два варианта разрушения — лизис и фрагментация. Фрагментация требует в 1000 раз меньше энергии, чем лизис. На основании этого указывалось на существование трех физико-химических факторов, удерживающих целостность мембраны и противодействующих ее разрушению:
1) поверхностное стягивание в результате химического контакта за счет ближайшего окружения, находящегося вне мембраны (нанример, гидрофобные взаимодействия);
2) поддержание устойчивости оболочки за сче! слабых сил молекулярного сцепления внутри мембраны (двумерные, жидкостные характеристики):
3) поддержание устойчивости оболочки за счет сильных молекулярных взаимодействий (свойства участков мембран, близкие к свойствам твердого тела).
Таким образом, наиболее слабым местом, определяющим разрыв мембран, является сцепление между двумя липидными слоями. Эти два слоя начинают «скользить» друг относительно друга, приводя к фрагментации мембран [26].
В настоящее время задача реологии клеточных мембран только поставлена. Для ее решения необходимы чувствительные методы локального определения кривизны мембран. Одним из таких методов служит непосредственное наблюдение формы клеточных мембран. Описанный ниже метод, разработанный в Институте биологической физики АН СССР [27], позволяет определять локальную кривизну клеточных мембран по электронно-микроскопическим изображениям клеток.
Синтез голограммы по набору ракурсных снимков
Синтез голограмм из некогерентно записанных снимков производится в случаях, когда непосредственная запись объемных изображений затруднительна или невозможна из-за отсутствия в соответствующем диапазоне источников когерентного излучения (например, в электронной микроскопии, рентгенографии). Снимки, полученные с помощью сканирующего электронного микроскопа, благодаря значительной глубине фокуса обладают заметным «эффектом объемности». Однако более точная оценка размеров выступающих деталей и рельефа на них затруднительна из-за отсутствия нараллакса.
Предыдущая << 1 .. 79 80 81 82 83 84 < 85 > 86 87 88 89 90 91 .. 121 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed