Научная литература
booksshare.net -> Добавить материал -> Биология -> Иваницкий Г.Р. -> "Математическая биофизика клетки" -> 84

Математическая биофизика клетки - Иваницкий Г.Р.

Иваницкий Г.Р., Кринский В.И., Сельков Е.Е. Математическая биофизика клетки — Наука, 1978. — 312 c.
Скачать (прямая ссылка): matematicheskayabio1978.djvu
Предыдущая << 1 .. 78 79 80 81 82 83 < 84 > 85 86 87 88 89 90 .. 121 >> Следующая

ностью одного вида концевых утолщений. Различие в размерах в какой-то степени маскируется достаточно плотной упаковкой на поверхности чехла. Спирали малого периода сформированы путем чередования концевых утолщений обоих видов вдоль каждого витка (рис. 108, д). Изменение формы определяет изменение в положении и числе контактных групп в субъединицах.
На периферии чехла проходят шесть внутренних спиральных каналов, вытянутых в тангенциальном направлении, суженных в центральной части и напоминающих цифру 8 с размерами 30 X
X 100 А.
Сравнение сечения сокращенного и растянутого отростков (рис. 109, а) позволяет предполаг ать, что растянутый отросток представляет собой неустойчивое состояние структуры как по длине, так и по ширине. Отросток растянут и одновременно компактно свернут. Причем стабилизирующей структурой является
стержень. Косвенным подтверждением этому могут служить данные морфогенеза, согласно которым стержень является матрицей, на которой происходит сборка чехла [21]. Совокупность событий, приводящих к реорганизации структуры при сокращении, выглядит так. Реорганизация базальной пластинки сопровождается структурными перестройками в стержне, в результате которых он (или какая-то неописанная пока структура, плотно прилегающая к нему) приобретает форму шестиконечника с несколько наклоненными в одну сторону лучами. Возможно, что стержень имеет подобную форму и в растянутом отростке, но ее не удается наблюдать из-за плотного прилегания чехла и стержня. Разрыв определенных связей приводит к отделению чехла от стержня и образованию зазора между ними. Чехол разворачивается и одновременно укорачивается. Субъединицы чехла при этом, совершая одновременно две формы движения — по дуге увеличивающегося радиуса при уширении чехла и в вертикальном направлении при укорочении, в результате движутся по коническим винтовым линиям, совпадающим, возможно, с переходными спиралями в модели Муди [22].
Более детального анализа заслуживает характер перестроек, происходящих в субъединицах при сокращении. В сечениях сокращенного чехла можно идентифицировать участки, соответствующие внутренним спиральным каналам растянутой структуры. Они лежат в вершинах зазора, образовавшегося между чехлом и стержнем. Они расположены на расстоянии около 60 А. В результате сокращения и отделения чехла от стержня спиральные каналы оказываются незамкнутыми со стороны, обращенной к центру отростка. Кроме того, отделение субъединиц сокращенного чехла друг от друга происходит за счет разрыва боковых стенок спиральных каналов. Таким образом, можно более четко определить локализацию структуры в сечении растянутого чехла, из которой в результате разрыва определенных связей и конформационного перехода формируются субъединицы сокращенного чехла. Она ограничена местами потенциальных разрывов между субъединицами и внутренним спиральным каналом. На рис. 109, б совмещены усредненные по шести результатам восстановления изображения сечений субъединиц растянутого и сокращенного чехла (сплошная линия соответствует субъединице растянутого чехла, пунктирная — сокращенного). В обоих случаях субъединицы имеют близкую форму, напоминающую рыболовный крючок. Преобразование формы при сокращении должно включать в себя, по-видимому, движение большего концевого утолщения (вдоль направления указанного стрелкой) и некоторую модификацию концевых утолщений.
Итак, на примере трехмерной модели отростка бактериофага показано, что методы восстановления объемных биологических
структур дают наглядное представление о механике пространственных перестроек «биологических молекулярных машин».
Теперь перейдем к изложению метода, позволяющего изучать рельеф поверхности клеток.
9.4. Голографический синтез объемного изображения поверхности клеточной мембраны
Реология клеточных мембран
Реология рассматривает вопросы течения и деформации сплошных сред. Все тела, встречающиеся в природе, обладают в той или иной степени текучестью.
Если для многих «простых» жидкостей вязкость постоянна (это заметил еще Ньютон), то в коллоидах вязкость становится переменной величиной. Возникновение в яшдких дисперсных системах и растворах полимеров пространственных структур, образуемых сцеплением частиц или макромолекул, вызывает резкое повышение вязкости. В «структурированных жидкостях» работа внешней силы затрачивается не только на преодоление обычной (ньютоновской) вязкости, но и на разрушение структуры.
Вязкость цитоплазмы клеток прежде всего связана со структурой составляющих ее биополимеров и органоидов. Абсолютная вязкость цитоплазмы колеблется от 2 до 50 спз (1 спз = 10~ч н-с/м2). Она меняется в различных частях клетки и в разные периоды клеточного цикла. В пределах от +12-н15 до +40-7-50° вязкость цитоплазмы постоянна, вне этих пределов она увеличивается [23].
Плазматические мембраны клеток обладают заметной эластичностью и низким поверхностным натяжением (ОД—2,0 дин/см). Клетки легко деформируются, но при снятии нагрузки они, как правило, приобретают первоначальную форму, определяемую белковым каркасом. Бактериальные и животные клетки благодаря белковому каркасу способны выдержать большое осмоти ческое давление внутри клетки (до 20 атм). Если с помощью ли-зоцима убрать белковый каркас и оставить только плазматическую мембрану, то клетка приобретает шаровидную форму. Это объясняется тем, что эластичная плазматическая мембрана стремится образовать форму с минимальным запасом энергии [24].
Предыдущая << 1 .. 78 79 80 81 82 83 < 84 > 85 86 87 88 89 90 .. 121 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed