Научная литература
booksshare.net -> Добавить материал -> Биология -> Иваницкий Г.Р. -> "Математическая биофизика клетки" -> 81

Математическая биофизика клетки - Иваницкий Г.Р.

Иваницкий Г.Р., Кринский В.И., Сельков Е.Е. Математическая биофизика клетки — Наука, 1978. — 312 c.
Скачать (прямая ссылка): matematicheskayabio1978.djvu
Предыдущая << 1 .. 75 76 77 78 79 80 < 81 > 82 83 84 85 86 87 .. 121 >> Следующая

Поскольку амплитуды пространственных частот, близких к граничной частоте, малы, то вклад их незначителен, поэтому предел разрешения, определяемый выражением (9.18), выглядит несколько заниженным. Вообще же оценки уравнений (9.17) и (9.18) достаточно близки. Естественно, что более точную оценку разрешения можно дать при известном характере спектра структуры.
Следует сказать, что метод точного восстановления обратным проектированием (модифицированный синтез проектирующих функций) и метод свертки эквивалентны методу Клуга и Де Розье, который состоит в подсчете фурье-преобразования проекций и затем выполнении обратного преобразования Фурье — Бесселя для восстановления структуры.
Если в первом методе модификация проекций осуществляется в реальном пространстве путем их свертки с преобразованием Фурье от функции выборки с весом, определяемым радиусом обратного пространства, то во втором случае это взвешивание произ-
(9.17)
(9.18)
водится автоматически в обратном пространстве. Оба метода имеют примерно те же ограничения и по разрешению. Однако метод Клуга и Де Розье требует большего времени для вычислений, так как необходимо выполнять два фурье-преобразования.
Итак, мы установили, что для восстановления внутренней структуры объекта, просвечиваемого электронными или оптическими пучками, необходимо иметь набор проекций его структуры, снятой под разными углами (т. е. при съемке объект необходимо поворачивать). Исключение составляют объекты, обладающие симметрией. При восстановлении их структуры иногда достаточно одной проекции.
Следует отметить, что закрепление и поворот объекта размером в доли микрона являются сложной технической задачей. Существующие методы установки препарата в электронном микроскопе принципиально не позволяют достичь больших углов поворота (свыше ±60°). При увеличении углов происходит перекрытие пучка электронов подложкой, на которой располагается наблюдаемый образец. Изготовление микроманипуляторов, которые позволили бы растянуть образец между двумя остриями игл, обеспечивая тем самым круговой обзор при вращении, — дело будущего.
Для иллюстрации описанных выше методов рассмотрим реконструкцию биологической структуры, обладающей спиральной симметрией.
9.3. Модель трехмерной структуры отростка бактериофага
Система «вирус — клетка»
Существуют несколько сотен бактериофагов или вирусов, поражающих бактерии [12, 13]. До недавнего времени основные усилия были сосредоточены на исследовании фагов с отростками, способных размножаться на клетках Escherichia coli, относящихся к штамму В. В настоящее время из них лучше других изучены семь фагов: от Т1 до Т7.
Все четные фаги имеют сходное строение (рис. 106). Их различие состоит в величине и толщине отростка, состоящего из стержня и чехла. В очень кратком изложении взаимодействие фага с бактериальной клеткой выглядит так: фаг встречает клетку, затем с помощью своих хвостовых нитей «проверяет» по химическому составу внешней мембраны вид клетки. Если клетка соответствует виду фага, то он прикрепляется к ней снаружи своей базальной пластинкой. Затем базальная пластинка с помощью лити-ческого фермента в месте своего крепления к клетке растворяет
S50A
Стержень Чехол
Базальная
пластинка
Хвостовые нити
Рис. 106. Схема строения бактериофага
небольшую зону внешней клеточной мембраны. Чехол хвоста сокращается, выталкивая ДНК (или РНК для некоторых видов Головна фагов) из головы фага внутрь клетки.
С этого момента биохимический аппарат клетки в течение двух десятков минут работает под контролем фаговой ДНК. Сначала синтезируются особые ферменты, которые блокируют синтез собственных белков и собственной ДНК клетки и стимулируют синтез фаговой ДНК и фаговых белков. Затем внутри клетки из фаговых белков начинается сборка компонентов новых фагов (хвостов, голов) и целых фагов. Приблизительно через 20 мин весь имевшийся в распоряжении клетки-хозяина биохимический материал будет использован для построения фагов. Оболочка клетки разрывается, лизируется и 100— 200 потомков фага готовы к встрече с новыми бактериальными клетками.
Как мы видим, вся проблема взаимодействия вируса и клетки распадается на большое количество отдельных проблем: проблема исследования рецепторных участков мембран (иммунохимическая проблема узнавания), молекулярных механизмов передачи информации ДНК — РНК — белок, морфогенеза (самосборки фагов) и, наконец, биологической подвижности. Сведения о пространственной молекулярной реорганизации отростка бактериофага при сокращении чрезвычайно важны, так как это сократительная структура однократного действия, она не обладает сопутствующими любому двигательному акту системами расслабления и регулирования и потому в наиболее элементарном виде моделирует поведение более сложных двигательных систем. Точные количественные результатывосстановленияпространственной организации такой структуры но электронно-микроскопическим изображениям представляют большой интерес.
Предыдущая << 1 .. 75 76 77 78 79 80 < 81 > 82 83 84 85 86 87 .. 121 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed