Научная литература
booksshare.net -> Добавить материал -> Биология -> Иваницкий Г.Р. -> "Математическая биофизика клетки" -> 77

Математическая биофизика клетки - Иваницкий Г.Р.

Иваницкий Г.Р., Кринский В.И., Сельков Е.Е. Математическая биофизика клетки — Наука, 1978. — 312 c.
Скачать (прямая ссылка): matematicheskayabio1978.djvu
Предыдущая << 1 .. 71 72 73 74 75 76 < 77 > 78 79 80 81 82 83 .. 121 >> Следующая

Другими словами, изображение структуры клетки представляется в виде предела суммы элементарных пространственных гармонических составляющих, частоты которых одинаковы для любых изображений (интегрирование ведется в бесконечных пределах), но амплитуды и фазы выбраны так, что их сумма есть анализируемое распределение яркости. Спектр показывает вклад в эту сумму каждой гармонической составляющей. Используемая для анализа структуры клетки система переносит каждую гармоническую составляющую из плоскости объектов в плоскость изображений с множителем Н (озх, ыу).
Так как Н (со*, (оу) определяется аппаратной функцией системы, детальный анализ ее двумерной частотной характеристики может быть проведен при решении задачи о дифракции света от точечного источника. В случае, когда такой путь осложнен, имеется возможность определить двумерную частотную характеристику системы по степени деформации выходного волнового фронта.
При образовании изображения в микроскопе за счет явлений дифракции происходит естественное разделение волн, дифрагированных на различных пространственных структурах. Угол, под которым свет дифрагирует на объекте, пропорционален отношению Х/р, где К — длина волны используемого излучения, а р — период пространственной структуры. При освещении препарата параллельным монохроматичным пучком света (когерентное осве-
щение) происходит разделение плоской падающей волны на ряд отклоненных под различными углами, являющимися функцией пространственной частоты, плоских волн. Дифрагированные препаратом пучки света концентрируются объективом в его задней фокальной плоскости. Апертура объектива, ограничивающая попадание в микроскоп лучей, дифрагированных под углами, большими определенной величины, по существу и определяет характер двумерной частотной характеристики Н (сох, соу) микроскопической системы при когерентном освещении. Каждая точка задней фокальной плоскости объектива связана с определенным направлением дифрагированной волны, а интенсивность световой энергии: в этой точке отражает удельный вес соответствующей пространственной частоты в формировании изображения. Пространственные частоты сох и (лу, имеющие размерность рад/ед. длины, связаны с переменными т] и ? плоскости спектра, имеющими размерность единиц длины, соотношением
I = (Ш2я) сох, т] = (М72я) щ, (9.5)
где | отсчитывается в направлении, параллельном х, а т] — в направлении, параллельном у, F — фокусное расстояние объектива, К — длина волны используемого света.
Таким образом, оптическая система при освещении объекта, находящегося в передней фокальной плоскости объектива, параллельным пучком света осуществляет в задней фокальной плоскости операцию, описываемую двумерным преобразованием' Фурье. Эта плоскость, названная Аббе плоскостью «первичного, изображения», является плоскостью двумерного спектра изображения объекта [31.
При исследовании трехмерных биологических объектов лучи, дифрагировавшие на внутренней структуре объекта, создают в дальней дифракционной зоне поле, в котором распределение амплитуд и фаз связано преобразованием Фурье с функцией плотности структуры р (х, у, z). Эти соотношения между структурой объекта и рассеянным им излучением навели на мысль о возможности математического моделирования структуры на основе данных о распределении амплитуд и фаз в обратном пространстве.
Задачи такого плана довольно распространены в структурных исследованиях и получили название обратных дифракционных задач. Возникают они в тех случаях, например, когда по условиям эксперимента невозможно сформировать увеличенное изображение объекта. Так, с помощью рентгеновых лучей можно наблюдать лишь теневое изображение структуры, отличающееся невысокой четкостью. Объясняется это тем, что нельзя изготовить отклоняющие системы, которые могли бы обеспечить формирование в этом диапазоне четкого изображения. Однако зарегистрировать распределение поля в дальней дифракционной зоне можно, так как
для этого не требуется никакой «оптики'). Выполнив обратное преобразование Фурье от распределения амплитуд и фаз в обратном пространстве, можно расчетным путем восстановить облученную структуру.
На этой идее основывается рентгеноструктурный анализ [4, 5]. Одна из сложностей рентгеноструктурного анализа состоит в том, что детекторы, используемые для регистрации рассеянного излучения, квадратичны и не регистрируют фаз. Это, как правило,— фотоматериалы или детекторы, использующие фотоэлектрический эффект. Для математического моделирования структуры необходимо знать распределения не только амплитуд, но и фаз в обратном пространстве. Поэтому фазовая проблема является одной из главных. Решить ее удается пока далеко не для всех объектов, а методы ее решения весьма трудоемки. В области рентгеноструктурного анализа в последнее время активно интересуются возможностью создания когерентных излучателей (лазеров) в рентгеновском диапазоне, которые позволили бы кардинально решить фазовую проблему.
Таким образом, для восстановления трехмерной структуры объектов необходимо знать распределение амплитуд и фаз в трехмерном обратном пространстве. Этому распределению соответствует физическая реальность в виде амплитуд и фаз излучения, дифрагированного объектом. Параметры излучения можно либо измерить в дальней дифракционной зоне — амплитуды непосредственно, а фазы косвенно, как в рентгеноструктурном анализе, либо зафиксировать, как в голографии оптического диапазона. Реконструкция структуры ведется либо расчетным путем, либо восстановлением волнового фронта методами голографии (расчетное восстановление изображения возможно и в голографии: в этом случае информация о распределении амплитуд и фаз должна быть предварительно извлечена из голограммы, а затем введена в вычислительную машину для расчета).
Предыдущая << 1 .. 71 72 73 74 75 76 < 77 > 78 79 80 81 82 83 .. 121 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed