Научная литература
booksshare.net -> Добавить материал -> Биология -> Иваницкий Г.Р. -> "Математическая биофизика клетки" -> 70

Математическая биофизика клетки - Иваницкий Г.Р.

Иваницкий Г.Р., Кринский В.И., Сельков Е.Е. Математическая биофизика клетки — Наука, 1978. — 312 c.
Скачать (прямая ссылка): matematicheskayabio1978.djvu
Предыдущая << 1 .. 64 65 66 67 68 69 < 70 > 71 72 73 74 75 76 .. 121 >> Следующая

Рис, 95. Задержки при передаче возбуждения от клетки к клетке
а — потенциал действия клетки 1, его передний фронт соответствует t = 0; б — г — потенциалы действия клетки 2 при различных условиях; б — нор.м (при t = 0 клеткл 2 в покое, задержка мала (0 т)>.
в — большая задержка (0 — т) (при t — 0 клетка рефрактерна);
г — ответ отсутствует, начальные условия те же-Различие рис. в и г обусловлено различным поведением под внешним током (показано пунктиром): в — есть повторные ответы, г — повторные ответы отсутствуют
которой возникает большая задержка, приведена на рис. 94, б. На ней имеется участок KDi, где движение медленное. Латентность примерно равна времени движения по этому участку 0 ^ tKDr Ле1ко видеть, что траектории типа изображенных на рис. 94, б могут наблюдаться только в случае, когда особая точка подсистемы (8.76) нри г = DEа (на рисунке она отмечена, как
Oi) неустойчива, т. е. когда ток потери устойчивости /кр DEд. Если подсистема (8.76). этому условию не удовлетворяет, возникают траектории типа изображенных на рис. 94. в, когда клетка вообще не возбуждается is ответ на включение тока. Достигнув устойчивой особой точки, представляющая точка системы будет находиться там вплоть до выключения тока, после чего переходит в состояние покоя О. На рис. 94, г иллюстрируется невозможность задержек, превышающих длительность плато потенциала действия т. Точка L соответствует 9Ш1Х — tLDj — т. Если начальные условия таковы, что начальная точка Р расположена выше L, то возбуждение не возникает (траектория такого же типа, что и на рис. 94, в). Это связано с тем, что /ко, > т, и ток выключается прежде, чем представляющая точка системы достигнет Dj.
Опишем некоторые следствия из этих результатов.
0щах и повторные ответы. Рассмотренный механизм возникновения латентности тесно связан с возникновением в мембране повторных ответов — автоколебаний под внешним током. Потеря устойчивости особой точки под током означает возможность возникновения повторных ответов. Это позволяет по наличию или этсутствию повторных ответов оценивать величину 0гаах-
Механизм возникновения в мембранах с повторными ответами большой латентности, сравнимой с длительностью потенциала действия, легко понять на качественном уровне. Обратимся к рис. 9Г>.
Пусть в момент возбуждения клетки 1 клетка 2 находится в состоянии рефрактерности. Пока клетка 1 возбуждена, она является источником тока через клетку 2. Если величина тока достаточна для возникновения автоколебаний, то через некоторое время, определяемое периодом автоколебаний, появится импульс, который и будет зарегистрирован как ответ клетки 5, появившийся с большой задержкой. Импульсы, показанные пунктиром, не появятся, так как с окончанием потенциала действия клетки 1 исчезает внешний ток. В мембранах, где постоянный ток не может вызвать автоколебаний, больших задержек не возникает, так как при тех же начальных условиях передача возбуждения блокируется. На первый взгляд кажется, что больших задержек не появится и в случае, когда период автоколебаний велик (межимпуль-сные интервалы больше длительности потенциала действия). Детальный анализ, проведенный выше, показывает, что и в этом случае 0тах ~ т — длительность потенциала действия.
Зависимость 0Шах от наклона медленной нуль-изоклины. Для прикладной задачи поиска антиаритмических препаратов особый интерес представляют воздействия, которые влияют на латентность. Легко видеть, что таким свойством обладают воздействия, меняющие наклон изоклины 1 = 0. При этом мембрану можно перевести из одного класса (01Пах ~ т) в другой (втах ~ 0), не меняя порога возбуждения и амплитуды потенциала действия (см. рис. 93).
Латентность и аккомодация. В рассматриваемой модели величина 0шах оказывается тесно связанной с аккомодационными свойствами мембраны, а именно для клеток с хорошей аккомодацией 0Шах мало (0тах <С ^)-
Действительно, клетки, в которых наблюдается феномен минимального градиента — отсутствие возбуждения при медленно нарастающем токе стимуляции, заведомо таковы, как на рис. 93, б: это объясняется тем, что в рассматриваемой модели минимальный градиент возможен лишь в том случае, если изоклина / = 0 вертикальна. При этом точка Oi устойчива при любом внешнем токе. Если наклон изоклины уменьшается (см. рис. 93, а), аккомодационные свойства ухудшаются. Клетка возбудится при каком угодно медленном нарастании тока, лишь только он достигает некоторого порогового значения /кр, при котором точка Oi становится неустойчивой.
8.6. Стационарные
и нестационарные режимы распространения
В т-модели возбудимой среды предполагается, что скорость распространения импульсов при стационарном режиме распространения не зависит от частоты следования импульсов. Однако в реальных возбудимых тканях такая зависимость есть. На рис. 96 показана зависимость скорости от фазы в миэлинизированиом волокне жабы. Видно, что с уменьшением интервала Т между импульсами скорость распространения уменьшается, и существует некоторое минимальное значение скорости, соответствующее границе ста ционарного режима. Возможно ли распространение с еще меньшими скоростями? При каких условиях? Эти вопросы оказываются важны как для исследования механизмов возникновения сердечных аритмий (напомним, что размеры сердца невелики по сравнению с длиной волны X), так и для «конструирования» новых антиаритмических препаратов.
Предыдущая << 1 .. 64 65 66 67 68 69 < 70 > 71 72 73 74 75 76 .. 121 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed