Научная литература
booksshare.net -> Добавить материал -> Биология -> Иваницкий Г.Р. -> "Математическая биофизика клетки" -> 65

Математическая биофизика клетки - Иваницкий Г.Р.

Иваницкий Г.Р., Кринский В.И., Сельков Е.Е. Математическая биофизика клетки — Наука, 1978. — 312 c.
Скачать (прямая ссылка): matematicheskayabio1978.djvu
Предыдущая << 1 .. 59 60 61 62 63 64 < 65 > 66 67 68 69 70 71 .. 121 >> Следующая

8.1. Фибрилляция сердечной мышцы
В нормальных условиях сердце сокращается ритмично, возбуждаемое импульсами от синусного узла — сердечного водителя ритма. Синхронизация сокращения мышечных клеток сердца обеспечивается за счет распространения волн электрического возбуждения по возбудимым мембранам. Однако возможны такие режимы, когда отдельные элементы сердечной мышцы перестают подчиняться синусовому узлу и начинают возбуждаться без видимой
связи друг с другом. Такие режимы получили название фибрилляции. Фибрилляция приводит к исчезновению макросокращений и прекращению циркуляции крови. Фибрилляция желудочков сердца часто наблюдается при инфаркте миокарда и является одной из основных причин мгновенных летальных исходов. При определенных условиях (например, при попадании раздражающего импульса в уязвимую фазу) фибрилляцию можно воспроизвести и в здоровом миокарде животного.
Многочисленные экспериментальные исследования ([35, 42—45, 29], обзор [47]) привели к предположению, что одной из причин фибрилляции является возникновение замкнутых траекторий циркуляции возбуждения (reentry) и «случайных блужданий волны» в неоднородной по рефрактерности среде. Было показано, что возникновение фибрилляции облегчается при увеличении неоднородности тканей миокарда (по рефрактерности, по величине порога) и при уменьшении рефрактерности R и скорости распространения [16]. Первая проверка того, что этот механизм действительно в состоянии обеспечить самоподдерживающуюся аритмию, была предпринята Моу и др. [13]. На ЦВМ запрограммировали модель сердечной ткани, учитывающую такие свойства реального миокарда, как неоднородность по рефрактерности, зависимость рефрактерности от частоты, относительную рефрактерность. В модели фибрилляцию удавалось вызвать тем же способом, как ее воспроизводят экспериментально, нанося серию раздражающих импульсов с высокой частотой. Обнаружено, что в модели среды возникновение фибрилляции затрудняется при увеличении рефрактерности i?, уменьшении степени неоднородности по рефрактерности ДЛ и уменьшении характерного размера среды L. Эти данные подтверждали представления, которые сложились из экспериментальных работ.
Модель, запрограммированная в работе [13], слишком сложна, чтобы ее можно было исследовать аналитическими методами и быть уверенным, что выделены основные параметры, контролирующие процесс. Однако эта первая модель сыграла важную роль. Воспроизведение фибрилляции на ЦВМ-модели показало, что возникающие на неоднородной среде нерегулярные блуждания волны, в принципе, воспроизводят основные черты фибрилляции, в том числе и то, что она является самоподдерживающейся аритмией.
Исследование механизмов фибрилляции стало возможно после того, как были выделены источники волн и начато изучение их взаимодействия.
8.2. Синхронизация при взаимодействии источников волн
Взаимодействие пейсмекеров. В главах 6 и 7 рассматривались источники волн в средах, где ни один из элементов не может самопроизвольно возбуждаться. Однако во многих биологических системах, и в частности в сердце, имеются клетки (клетки синусного и атриовентрикулярного узлов, волокна Нуркинье), которые могут периодически самопроизвольно возбуждаться. Такие клетки получили название пейсмекеров. В возбудимой среде от пей-смекера во все стороны распространяются волны в виде концентрических окружностей. Частота следования волн определяется периодом работы пейсмекера.
Если в среде имеется несколько пейсмекеров, работающих с разными периодами, то через некоторое время останется только один, период работы которого наименьший. Этот результат был получен Гельфандом и Цетлиным [48]. Ниже он иллюстрируется простейшим случаем взаимодействия двух пейсмекеров. Рассмотрим длинный отрезок линейной возбудимой ткани, на концах которого расположены пейсмекеры с периодами и Г2 (Гх < Г2). Пусть первый импульс они выдали одновременно, тогда волны возбуждения встретятся и погаснут посредине между пейсмеке-рами. Следующий импульс первый пейсмекер выдает на Г2 — 7\ раньше второго, и место встречи сдвинется в сторону медленного пейсмекера на величину б = г1гу (Г2 — Т\). Далее место встречи будет сдвигаться шагами одинаковой величины б в том же направлении, пока, наконец, некоторый импульс от первого пейсмекера пройдет все расстояние между ними, так и не встретив волну второго. После этого медленный пейсмекер попадает под влияние быстрого и начинает работать с его частотой (синхронизуется).
Приведенные результаты относятся к взаимодействию источников волн в формальных возбудимых средах (винеровской среде, т-модели). Для моделей в виде дифференциальных уравнений задача о взаимодействии спонтанно активных клеток — частный случай задачи о синхронизации генераторов; эта задача детально и в разных модификациях исследована в теории колебаний [49]. Здесь уже генераторы синхронизируются не на максимальной частоте, причем возможны различные варианты, в зависимости от других параметров генераторов (установившаяся частота может быть даже ниже собственной частоты каждого из двух генераторов [50]). Однако это касается лишь генераторов с непосредственной связью. Для генераторов, связанных через возбудимую среду (модель пейсмекеров, расположенных в ткани сердца достаточно далеко один от другого), по-видимому, должен сохраняться тот же результат, что и для винеровской модели, так как место встречи волн от двух генераторов будет перемещаться в сторону более
Предыдущая << 1 .. 59 60 61 62 63 64 < 65 > 66 67 68 69 70 71 .. 121 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed