Научная литература
booksshare.net -> Добавить материал -> Биология -> Иваницкий Г.Р. -> "Математическая биофизика клетки" -> 27

Математическая биофизика клетки - Иваницкий Г.Р.

Иваницкий Г.Р., Кринский В.И., Сельков Е.Е. Математическая биофизика клетки — Наука, 1978. — 312 c.
Скачать (прямая ссылка): matematicheskayabio1978.djvu
Предыдущая << 1 .. 21 22 23 24 25 26 < 27 > 28 29 30 31 32 33 .. 121 >> Следующая

Для реакции с тремя стационарными состояниями характерно наличие порогов для внешних возмущений, вызывающих смену состояний: подпороговое возмущение вызывает лишь незначительное временное отклонение от устойчивого стационарного сос-
1 ^ з Г\ Г\ Г\ ^
\ i/\AAj

!
Рис. 18. Возможные типы динамического поведения проточной реакции, имеющей три альтернативных стационарных состояния
1 — изменения скорости реакции во времени, соответствующие трем стационарным точкам О,, Ог и Оз (см. рис. 7 и 13); 2 — устойчивое стационарное значение скорости; з— неустойчивое стационарное значение скорости. Стрелками показаны моменты приложения возмущений различной силы
тояния, а сверхпорог овое — переход реакции в новое состояние (рис. 18, 9—12). При этом возможны различные варианты переходов: из неколебательного в другое неколебательное состояние (рис. 18, 5), из неколебательного в колебательное (рис. 18, 10), из колебательного в неколебательное (рис. 18, 11), из колебательного состояния большой амплитуды в одно из двух неколебательных стационарных состояний, отличающихся установившимся значением скорости (рис. 18, 12).
Стоит подчеркнуть тот факт, что все перечисленные формы динамического поведения могут быть получены в математической модели любой открытой ферментативной реакции, имеющей гис-терезисную квазистационарную характеристику, если только на величины параметров не наложены какие-либо физические ограничения. Иными словами, широкий спектр динамического поведения проточных реакций инвариантен по отношению к молекулярным механизмам, создающим гистерезис квазистационарной характеристики.
Выше упоминалось о большом сходстве между «возбуждением» открытой реакции и электрическим возбуждением биологических мембран. Это сходство основано на общей нелинейности — на гистерезисе квазистационарных характеристик, которые имеют возбудимые реакции и мембраны (см. главу 4). Между тем подобные гистерезисные характеристики (N- или S-образные характеристики, характеристики с падающим участком, характеристики с отрицательным сопротивлением, трением и т. п.) широко распространены в системах самой различной природы. И всякий раз, когда открытая система произвольной физической природы обнаруживает гистерезис квазистационарной характеристики, она обладает тем же набором динамических свойств, какие были выявлены у других гистерезисных систем. Прекрасные примеры таких систем, встречающихся в физике, электронике, физической химии, электрохимии, электронике и в химии открытых гомогенных реакций, а также доказательства сходства динамического поведения всех этих совершенно различных систем можно найти в публикациях Франка [76—79].
2.6. Эквивалентные математические и кинетические модели
Математически сходство динамического поведения различных систем, имеющих гистерезис квазистационарной характеристики, можно интерпретировать как простое следствие эквивалентности их математических моделей. Например, если для описания кинетики действия фермента Е, катализирующего реакцию
(2.57)
или реакцию
V,
(2.58)
использовать уравнение вида (2.42), то математические модели этих реакций будут иметь тот же вид, что математическая модель
(2.36) реакции (2.32). Если же фермент Е в реакциях (2.57) и (2.58)
имеет олигомерную структуру и кинетика его действия описывается более сложным уравнением (2.54) или еще более сложным уравнением (1.102), то математические модели этих реакций, хотя и отличаются от модели (2.36) реакции (2.32) видом своих правых частей и количественными характеристиками взаимоотношений между переменными, все же остаются топологически эквивалентными более простой модели’(2.36). Под топологической эквивалентностью здесь подразумевается одинаковое строение параметрических и, следовательно, фазовых портретов моделей.
Очевидно, что усилия, затрачиваемые на анализ новой, еще не изученной биохимической системы, можно резко сократить, если доказать, что ее математическая модель эквивалентна более детально изученной модели. В таком случае все свойства более полно изученной модели автоматически распространяются на новую модель. Таким образом, наиболее детально изученная модель некоторого множества эквивалентных моделей может служить эталоном, с которым сравниваются другие менее изученные модели, принадлежащие этому множеству.
Приведение данной модели к эталонной может быть осуществлено с помощью соответствующей замены переменных [72]. Так, например, математическую модель открытой реакции с продукт-ной активацией у-го порядка
* - , г* .
1 Ь-------^ ’ (2.59)
имеющей в безразмерных переменных вид [80—84]
da 1 п &Оа 0
= Vlm — PlCTi — V, = v2m — р2ст2 + V,
где
v = ai(v0 + ст2)/( 1 + «1^1 + erg (1 + CTj)), ах > 0,
V0< 1,
с помощью простой замены переменных
сг2 — <та0 сг.2, v2m = P2ct2q v2m (2.62)
Предыдущая << 1 .. 21 22 23 24 25 26 < 27 > 28 29 30 31 32 33 .. 121 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed