Научная литература
booksshare.net -> Добавить материал -> Биология -> Гусев М.В. -> "Микробиология" -> 66

Микробиология - Гусев М.В.

Гусев М.В., Минеева Л.А. Микробиология: Учебник — M.: Изд-во Моск ун-та, 1985. — 376 c.
Скачать (прямая ссылка): mikrobiologiya.pdf
Предыдущая << 1 .. 60 61 62 63 64 65 < 66 > 67 68 69 70 71 72 .. 192 >> Следующая

128

классов в зависимости от того, какие конкретно химические перестройки происходят в молекуле ДНК в рамках одного нуклеотидного остатка: замена, вставка или выпадение. К мутациям, затрагивающим сегмент бактериальной хромосомы, ведут нарушения последовательности и количества генов.
Частым типом структурных повреждений ДНК, вызываемых УФ-излучением, является образование пиримидиновых димеров в результате ковалентного связывания соседних пиримидиновых оснований. Реже УФ вызывает разрыв водородных связей, образование межцепочечных поперечных сшивок и поперечных сшивок между ДНК и белком. Ионизирующие излучения всех видов вызывают главным образом одноцепочечные разрывы в ДНК; разрывов, поражающих обе цепи, обычно на порядок меньше. Различные химические мутагены индуцируют образование внутрицепочечных и межцепочечных поперечных сшивок и одноцепочечные разрывы ДНК.
В процессе эволюции прокариоты выработали способы защиты генетического материала от повреждающего воздействия облучения и различных химических факторов. В клетках прокариот обнаружены эффективные системы репарации мутационных повреждений.
Наиболее изученными механизмами восстановления повреждений ДНК являются фотореактивация, вырезание повреждений и пострепликационное, или рекомбинацион-ное, восстановление. Фотореактивация — наиболее простой механизм, восстанавливающий лишь индуцированные УФ-излучением повреждения ДНК, сопровождающиеся образованием пиримидиновых димеров. Особенность фотореактивации заключается в том, что ее действие распространяется только на одну цепь ДНК и не зависит от того, является ли молекула ДНК одно- или двухцепочечной. Осуществляется фотореак-
-А-А
I
—г—T-T
+-Ц-А-А
I ! !
А Б В <??'
Рис. 41. Механизмы восстановления повреждений ДНК. А — фотореактивация пиримидиновых димеров: 1 — фотореактивирую-
щий фермент+видимый свет. Б — Вырезание одноцепочечных повреждений: 1 — сегмент интактной ДНК; 2 — повреждение в одной из цепей ДНК; S — вырезание короткого сегмента, содержащего поврежденный участок; 4 — заполнение образовавшейся бреши нуклеотидами, комплементарными к интактной цепи, функционирующей в качестве матрицы; сшивание их с помощью
ДНК-полимеразы и ДНК-лигазы. В — Пострепликационное восстановление ДНК: 1 — сегмент двухцепочечной молекулы ДНК, содержащей повреждение; 2 — репликация молекулы, приводящая к образованию двух молекул, одна из которых содержит повреждение и брешь в разных цепях; 8 — обмен генетическим материалом между идентичными цепями сестринских молекул; 4 образование молекул, каждая из которых содержит одну интактную цепь, а в другой — повреждение или брешь. Крестиком обозначено повреждение; точками — восстановительный синтез; волнистой линией — синтезированные цепи дочерних молекул
ДНК

5 М. В. Гусев, Л. А. Минеева
129

тивация светозависимым фотореактивирующим ферментом, обеспечивающим специфическое расщепление пиримидиновых димеров (рис. 41,Л).
Вырезание повреждений — основной темновой механизм восстановления различных одноцепочечных повреждений ДНК, в том числе и пиримидиновых димеров. Особенность этого механизма репарации в том, что восстановление одноцепочечных повреждений происходит только тогда, когда не повреждена комплементарная цепь молекулы ДНК. В процессе темновой репарации происходит вырезание в одной и&-цепей молекулы ДНК коротких сегментов (длиной около 30 нуклеотидов), содержащих поврежденный участок, и последующее заполнение образовавшейся бреши комплементарными нуклеотидами с использованием неповрежденной цепи ДНК в качестве матрицы (рис. 41,5).
Механизмы, обеспечивающие восстановление повреждений в обеих цепях молекулы ДНК, зависят от характера повреждений. Принципиальная схема заключается в следующем (рис. 41,5). ДНК-полимераза, катализирующая репликацию ДНК, «встретив» на своем пути повреждение, «перескакивает» через него, и процесс репликации.-продолжается. Образуются две дочерние молекулы, одна из которых содержит в одной цепи первичное повреждение, в другой — брешь, возникшую при репликации »< располагающуюся напротив повреждения.
Заделывание бреши происходит путем генетического обмена между идентичными цепями сестринских двухцепочечных молекул. В результате каждая из них имеет теперь по одной неповрежденной цепи, которая может служить матрицей в процессе-репарации повреждений разного типа, как это изображено на схеме Б того же рисунка.
Фенотипическое проявление мутаций. Поскольку мутация — это стабильное изменение наследственного материала клетки, она реализуется по тем же каналам, как любая другая генетическая- информация. На этом пути судьба мутаций различна. Некоторые из них не влияют на признаки организма, оставаясь «молчащими». Такие мутации могут не проявляться в процессе трансляции, т. е. не приводить к изменению-аминокислотной последовательности синтезируемого белка. В другом/ случае изменение может происходить вдали от активного центра фермента и потому не сказываться на его функции. Если же мутация приводит к изменению в активном центре или резко влияет на его структуру, это сразу сказывается на функциях фермента. Диапазон изменения функциональной активности фермента в этом случае велик: от незначительного понижения активности до полной ее потери. B последнем случае это часто приводит к гибели организма.
Предыдущая << 1 .. 60 61 62 63 64 65 < 66 > 67 68 69 70 71 72 .. 192 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed