Научная литература
booksshare.net -> Добавить материал -> Биология -> Гэлстон А. -> "Жизнь зеленого растения" -> 61

Жизнь зеленого растения - Гэлстон А.

Гэлстон А., Девис П., Сэттер Р. Жизнь зеленого растения — М.: Мир, 1983. — 552 c.
Скачать (прямая ссылка): jiznzelenogorasteniya1983.djvu
Предыдущая << 1 .. 55 56 57 58 59 60 < 61 > 62 63 64 65 66 67 .. 201 >> Следующая

В том случае, когда раствор отделен от чистой воды полупроницаемой мембраной, вода поступает в раствор и вследствие этого возникает давление (осмотическое давление), равное по величине, но противоположное по знаку исходному осмотическому потенциалу. Раствор обладает потенциалом, за счет которого возникает такое давление, и его можно обнаружить, если, например, этот раствор поместить в прибор, называемый осмометром (рис. 6.2). Численно осмотический потенциал равен тому давлению, которое необходимо приложить к раствору в осмометре для того, чтобы предотвратить поступление в него воды.
Клетка, содержащая в ограниченном клеточной стенкой пространстве окруженный мембраной раствор (т. е. вакуоль), пред
ставляет собой, в сущности говоря, осмометр. Если такую клетку погрузить в чистую воду, то в нее начнет поступать вода.
В отсутствие противодавления клеточной стенки поступление воды в клетку определяется водным потенциалом клетки Сфкл), в начальный момент времени равным осмотическому потенциалу (г|зп) раствора, заполняющего вакуоль. Однако с проникновением воды в вакуоль ее объем увеличивается, вода разбавляет клеточный сок и клеточная стенка начинает испытывать давление. До каких пор будет вода поступать в вакуоль? Если бы это поступление зависело только от осмотического потенциала, то теоретически оно могло бы продолжаться до бесконечности. Однако в действительности с увеличением объема вакуоли цитоплазма прижимается к клеточной стенке и возникает тургор- ное давление, а вместе с ним и равное ему по величине противодавление клеточной стенки на клеточное содержимое.; Под потенциалом давления (1)эд) понимают обычно именно противодавление клеточной стенки, но этот термин может обозначать и тургорное давление (равное первому по величине, но противоположное ему по знаку). Когда \|зд достигнет достаточно большой величины, дальнейший приток воды в вакуоль прекращается. Устанавливается динамическое равновесие, при котором суммарный поток воды равен нулю, т. е. количество воды в вакуоли не изменяется, хотя молекулы воды и продолжают быстро перемещаться через мембрану в обоих направлениях. При этом положительный потенциал давления полностью уравновешивает отрицательный осмотический потенциал и клетка перестает поглощать воду; в таком состоянии ее водный потенциал равен нулю.
В любой данный момент времени водный потенциал клетки определяется разностью между потенциалом давления и осмотическим потенциалом. Если дать клетке возможность в дистиллированной воде достичь максимального тургора, то она будет поглощать воду до тех пор, пока г^д не сравняется с т. е. 1]экл не станет равным нулю. После этого она более уже не сможет поглотить воду ни из какого раствора. Не сможет она и отнять ее от другой клетки. Если рядом окажутся две клетки с разными г|>кл, то вода через клеточную стенку будет переходить из клетки с более высоким (менее отрицательным) г|> кл В КЛбТКу с более низким (более отрицательным) а|5кл.
Рассмотрим теперь поступление воды в вакуоль и из вакуоли растительной клетки in situ (т. е. в растении). Вакуоль и окружающий ее протопласт заключены внутри клеточной стенки, через которую вода диффундирует свободно. (Клеточная стенка в этом смысле напоминает фильтровальную бумагу, которая тоже состоит из целлюлозы.) Клеточная стенка насыщена водой до тех пор, пока влажность почвы достаточна, а транспирация не слишком интенсивна. В этих условиях \|з в области клеточной стенки выше, чем в вакуоли, и суммарный поток воды направлен внутрь, в вакуоль. Иная картина наблюдается при недостатке влаги: в такие периоды в клеточных стенках может ощущаться водный дефицит и, следовательно, ф в этой области окажется ниже, чем в вакуоли. В результате вода будет оттекать из вакуоли (суммарный поток воды направлен наружу). Клетки начинают терять тургор; вследствие снижения тургорного давления они становятся вялыми и мягкими. Если из-за очень большой потери воды тургорное давление упадет до нуля, то лист завянет совсем; дальнейшая потеря воды приведет к разрыву протопластов и к гибели клеток, хотя, как мы увидим ниже, растение может избежать резкой потери воды, быстро закрыв свои устьица в ответ на недостаток влаги. Впоследствии, если клетки остались интактными, они вновь смогут поглотить воду и восстановить свой тургор; это произойдет либо при получении растением достаточного количества воды, либо в ночное время, когда транспирация практически прекращается и испарение вполне компенсируется поглощением воды из почвы.
г)? ?— водный потенциал; равен нулю для чистой воды; равен нулю или отрицателен для клеток (г|>Кл). г|>п — осмотический потенциал; всегда отрицателен.
?фд—потенциал давления; обычно положителен в живых клетках (т. е. в клетках, содержимое которых находится под давлением), но отрицателен в клетках ксилемы (в которых создается натяжение воды).
1]эКл есть суммарный результат действия г|>л и г|>д:
'фкл=г1зл~Ьг15д-
При полном тургоре г|>л=—1|3д и 1|3кл = 0.
При начальном плазмолизе г|зд = 0 и ?фКл=,ф .
В искусственных условиях удается наблюдать и более сильное сокращение протопластов. Если мы поместим кусочек ткани в раствор более концентрированный, чем вакуолярный сок,, то отток воды из клеток будет продолжаться до тех пор, пока протопласты не отделятся от клеточных стенок и не сожмутся в комок в середине клетки. Наружный раствор легко проходит через клеточную стенку, которая практически не препятствует движению воды, и заполняет пространство между клеточной стенкой и сократившимся протопластом. Клетку в таком состоянии называют плазмолизированной (рис. 6.3). Если плазмолиз не слишком сильный и не слишком длительный, то клетка, после того как ее перенесут в воду, восстанавливает свой обычный тургор. В растительных клетках, испытывающих недостаток воды в воздушной среде, плазмолиза как такового не происходит, поскольку отсутствует свободный раствор, который мог бы заполнить пространство между протопластом и клеточной стен-
Предыдущая << 1 .. 55 56 57 58 59 60 < 61 > 62 63 64 65 66 67 .. 201 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed