Научная литература
booksshare.net -> Добавить материал -> Биология -> Гэлстон А. -> "Жизнь зеленого растения" -> 100

Жизнь зеленого растения - Гэлстон А.

Гэлстон А., Девис П., Сэттер Р. Жизнь зеленого растения — М.: Мир, 1983. — 552 c.
Скачать (прямая ссылка): jiznzelenogorasteniya1983.djvu
Предыдущая << 1 .. 94 95 96 97 98 99 < 100 > 101 102 103 104 105 106 .. 201 >> Следующая

Движение рычага, обусловленное ростом колонки сегментов
Вращающаяся

Рис. 9.16. Прибор для регистрации быстрых изменений роста с типичной кривой, характеризующей рост после добавления ИУК к буферу с pH около 6,5.
Накачивание раствора, к которому добавлен ауксин
время, в течение которого происходят любые изменения длины отрезка стебля. Через 10—15 мин после добавления ауксина еще не отмечается увеличения скорости роста. Затем рост быстро ускоряется и достигает наивысшей скорости в течение последующих 15 мин. Таким образом, промежуток времени от 10 до 15 мин после нанесения ауксина требуется для того, чтобы вызвать изменения в метаболизме, приводящие в итоге к ускорению роста. Эти изменения должны достичь своего максимума примерно через 30 мин. Поэтому любые изменения, которые не обнаруживаются в течение часа или несколько позже, не могут относиться к первоначальному действию ауксина на индуцирование роста. Однако они могли бы быть частью механизмов, которые должны включиться позже для поддержания индуцированного ауксином роста.
Какое же изменение происходит за такой короткий период, что его можно связать с индуцированным ауксином растяжением клеток? Ответ, вероятно, заключен в феномене, впервые обнаруженном в 30-х годах, но не обратившем на себя внимание большинства ученых. Затем он был открыт повторно и описан в начале 70-х годов. Было установлено, что кислая среда (низкий pH) способствует растяжению клеток. Если отрезки стебля или колеоптиля поместить в прибор, изображенный на рис. 9.16, погрузив их в кислый раствор, то их рост усилится. Если для улучшения проникновения кислоты с отрезков снять эпидермис, то оптимальное усиление роста и растяжимости клеточных стенок будет наблюдаться при pH около 5. Если мертвые отрезки растянуть механически, то усилие, которое необходимо приложить, чтобы достигнуть определенной степени растяжения, будет меньше в том случае, когда отрезки погружены в раствор с pH 3,5, а не с pH 7,0. Таким образом, влияние кислоты на растяжение не требует наличия метаболически активных клеток. Растяжение клеток является прямым следствием действия ионов Н+ на компоненты стенки. О связи между кислотой и ауксином свидетельствует то, что они оказывают сходное влияние на рост. Различаются же они тем, что, во-первых, кислота действует на стенки, а ауксин — на клетки и, во-вторых, влияние кислоты длится лишь короткое время, а влияние ауксина — по меньшей мере несколько часов. Между кислотой и ауксином, возможно, существует простая зависимость. Если под влиянием ауксина происходит подкисление клеточных стенок, то это может вызвать их последующее разрыхление. Этот механизм объясняет лишь первоначальную стимуляцию роста, так как материалы, необходимые для дальнейшего растяжения клеток, быстро исчерпываются. Чтобы рост мог продолжаться, ауксин должен проявить еще одно действие, которое обеспечило бы синтез новой стенки. Именно этот последний процесс отсутствует, когда растяжение стенки индуцируется только одной кислотой.
Клеточная
стенка
Клеточная Цитоплазма
мембрана
фермент неакти-_ вен при высоких pH (е)
Молекула целлюлозы
Полисахаридная
поперечная
связь
Фермент, активированный низким pH (Е), разрывает поперечные святи, что и позволяет - микрофибриллам скользить относи тельно друг друга под влиянием тургорного давления

1 |рм|С»Н- .|Ы,4 ;м
ТИВЙН в ОТфСТ- : ык 11VK
В присутствии ИУК протонный
ак1ивиру<
ется
ADP + Р.
Рис 9.17. Теория протонного насоса, объясняющая действие ИУК на растяжимость стенки н растяжение клетки.
Известно, что в клеточных мембранах и в мембранах различных органелл клетки имеются метаболические насосы для разнообразных веществ, таких, как минеральные ионы, сахароза, гормоны и ионы водорода (см. гл. 7). Согласно одной широко распространенной теории, ауксин стимулирует работу локализованного в плазмалемме насоса, перекачивающего ионы Н+ из цитоплазмы в клеточную стенку. Такие насосы представляют собой белки, получающие энергию для своей работы в результате расщепления АТР до ADP и неорганического фосфата. Ресинтез АТР зависит, конечно, от метаболизма. Эта теория предполагает, что насос, перекачивающий ионы Н+, функционирует лишь в том случае, если с ним связана ИУК, действующая как эффектор (активатор) (рис. 9.17). Такая связь, по-видимому, обратима. Она образуется и .распадается в зависимости от концентрации ИУК в окружающей цитоплазме. Эта модель в основном подтвердилась, когда было показано, что отрезки колеоптиля со снятым эпидермисом при помещении их в раствор* подкисляют его только после добавления ИУК в среду. Таким образом, несмотря на то что теория активируемого ауксином протонного (Н+) насоса не разрешила всех проблем и ее необходимо дополнить некоторыми деталями, она согласуется с большинством данных и представляет собой приемлемое объяснение действия ауксина на растяжение клеток.
Но мы еще не закончили. Почему подкисление способствует растяжению клеточных стенок? Чтобы ответить на этот вопрос, мы должны вернуться к структуре клеточной стенки растения (рис. 2.31). Стенка состоит из длинных молекул целлюлозы, связанных между собой полисахаридными мостиками, образованными смесью сахаров, таких, как галактоза, арабииоза и ксилоза. Полисахаридные мостики, составляющие часть стенки, обычно называют гемицеллюлозой. Длинные целлюлозные молекулы, соединенные друг с другом этими поперечными связями, обусловливают жесткость клеточной стенки. При необратимом растяжении клеточной стенки, что происходит обычно в процессе роста, целлюлозные цепи должны скользить относительно друг друга, и это может, быть достигнуто только в том случае, если поперечные связи между цепями целлюлозы будут разорваны. Когда растяжение стенки завершается, поперечные связи образуются вновь, фиксируя целлюлозные цепи в их новом положении (рис. 9.18). В результате размеры клетки увеличиваются. Чтобы кислота могла способствовать увеличению растяжимости стенки, она, очевидно, должна разрывать поперечные связи между молекулами целлюлозы. Было высказано предположение, что в клеточной стенке имеется pH-зависимый фермент, разрушающий такие связи. Этот фермент не действует при pH 6,0—7,0, но становится (высокоактивным при pH около 5,0. Когда под влиянием ауксина, присутствующего внутри клетки, ионы Н+ накачиваются в клеточную стенку, фермент активируется и разрушает поперечные связи; целлюлозные цепи освобождаются и получают возможность скользить одна относительно другой. Такое скольжение осуществляется под действием тургорного давления клеточного содержимого, что вызывает растяжение стенки и увеличение размеров клетки. Мы еще не знаем природу этого гипотетического фермента, о существовании которого свидетельствует то, что некоторые химические соединения, препятствующие обычно действию ферментов, способны ингибировать индуцированное кислотой растяжение стенок изолированных клеток.
Предыдущая << 1 .. 94 95 96 97 98 99 < 100 > 101 102 103 104 105 106 .. 201 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed